Completeness proofs for propositional logic with polynomial-time connectives

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representing Propositional Logic Connectives With Modular Polynomials

This paper explores the relationship between n-valued propositional logic connectives and modular polynomials. Namely the representing of logic connectives using modular polynomials. The case for n = 2 is explored and a method is developed for finding the coefficients of the unique polynomial that represents any given binary logic connective. Examples are then given for using the modular polyno...

متن کامل

On the polynomial-space completeness of intuitionistic propositional logic

We present an alternative, purely semantical and relatively simple, proof of the Statman’s result that both intuitionistic propositional logic and its implicational fragment are PSPACE -complete.

متن کامل

Weak Completeness Theorem for Propositional Linear Time Temporal Logic

We prove weak (finite set of premises) completeness theorem for extended propositional linear time temporal logic with irreflexive version of until-operator. We base it on the proof of completeness for basic propositional linear time temporal logic given in [20] which roughly follows the idea of the Henkin-Hasenjaeger method for classical logic. We show that a temporal model exists for every fo...

متن کامل

Non-deterministic Connectives in Propositional Godel Logic

We define the notion of a canonical Gödel system in the framework of single-conclusion hypersequent calculi. A corresponding general (nondeterministic) Gödel valuation semantics is developed, as well as a (non-deterministic) linear intuitionistic Kripke-frames semantics. We show that every canonical Gödel system induces a class of Gödel valuations (and of Kripke frames) for which it is strongly...

متن کامل

Counting proofs in propositional logic

We give a procedure for counting the number of different proofs of a formula in various sorts of propositional logic. This number is either an integer (that may be 0 if the formula is not provable) or infinite.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Pure and Applied Logic

سال: 1989

ISSN: 0168-0072

DOI: 10.1016/0168-0072(89)90044-4